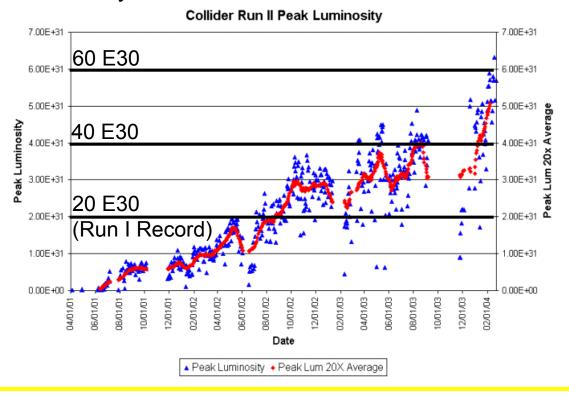
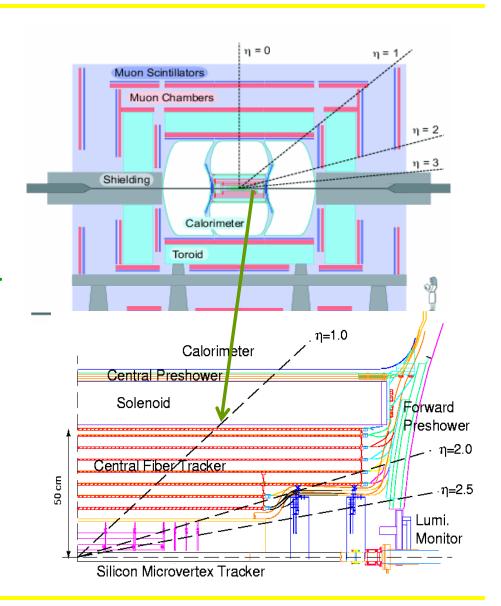
Recent Top Quark Results from DØ

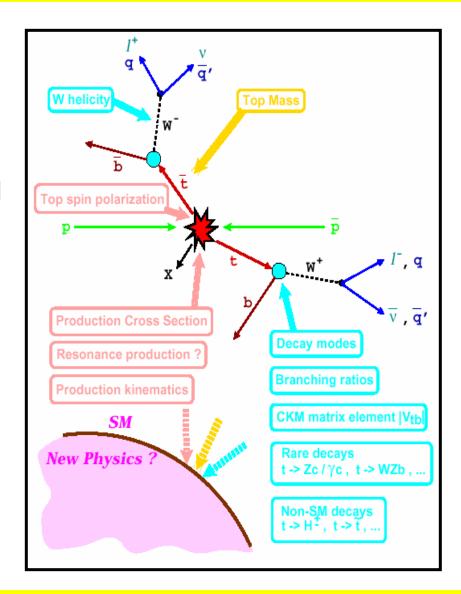

- New Run II topological σ_{tt} measurement (in development)
- New method for extracting **t**-quark properties applied to Run I data:
 - Mass measurement
 - > W helicity measurement

Stefan Anderson
University of Arizona
On Behalf of the DØ Collaboration

Top Production at RunII of Tevatron


- pp collider with center of mass energy 1.96 TeV
 - World's only source of top quarks
 - Production rate increased vs Run I
 - Higher energy ⇒ higher production cross-section (up ~30%)
 - Higher luminosity

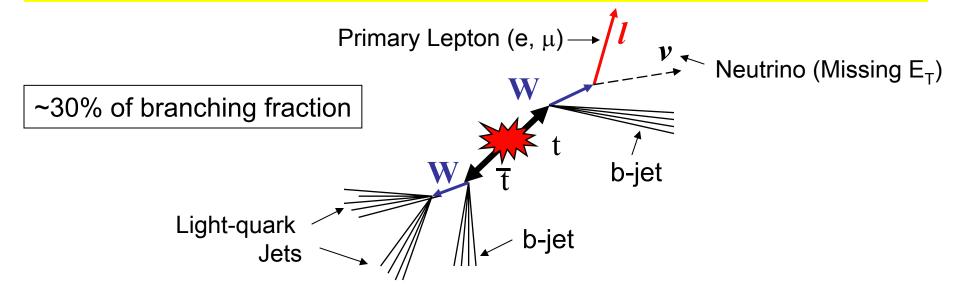
The Run II DØ Detector


- New central tracking inside 2 T solenoid
 - Silicon vertex detector
 - b-tagging
 - Scintillating fiber tracker
- New forward muon system
- New readout / trigger electronics

The Runll Dataset

- DØ has recorded dataset of 280 pb⁻¹
 - >2x bigger than sample used for top discovery
 - Expect to double again by end of 2004
 - Ultimately, ≥30X increase over Run I
- Sample in hand exciting program of top physics underway:
 - Production: tt and single-top
 - Mass to higher precision
 - W polarization in t decay

Current Analysis Sample


- Just finished reprocessing 200 pb-1 of data from before Tevatron shutdown in autumn 2003
 - >520 million events processed at 6 global sites
 - Motivated by improvements in reconstruction code
 - New tracking algorithm
 - New alignment
 - Improved jet-finding algorithm

Benefits to top analyses:

- μ track-matching ε ↑ 20%
- EM likelihood ε ↑ 20%
- Begun a new top cross-section measurement
 - Using 140 pb-1
 - Conservative data quality criteria (precision measurements)
 - Expect to recover significant fraction of remaining data

Cross Section Measurement, *l*+jets

- Backgrounds
 - W + ≥4 jets production, leptonic W decay
 - QCD multijet production, heavy quark decay, fake lepton
- Analysis Strategy
 - Preselect sample enriched in W-like events
 - Use topological information to separate top from background

\(\ell\) + jets Event Preselection

Preselection

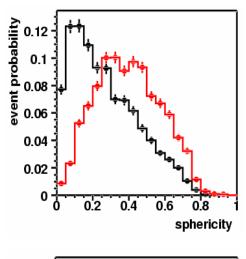
- e or μ
 - p_T>20 GeV
 - $|\eta_e|$ < 1.1, $|\eta_{\mu}|$ < 2.0
 - Isolated from tracks and calorimeter energy
 - Consistent w/ primary vertex

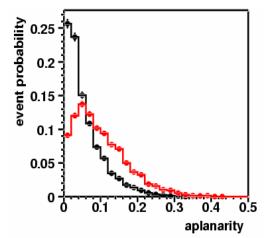
Neutrino

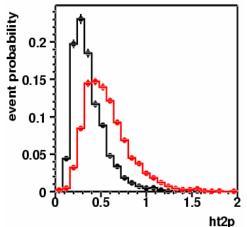
- **₺**_T > 20 GeV
- **⊭**_T neither along nor against lepton's direction

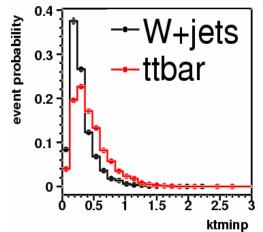
Jets

• ≥4 jets, p_T > 15 GeV

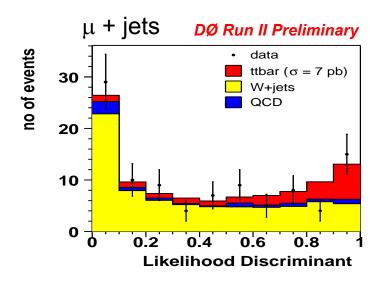

Remaining QCD Multijet

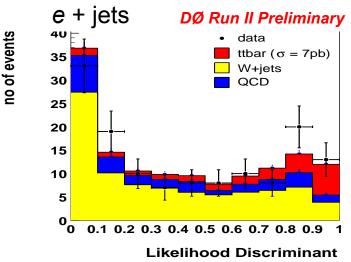

- Exploit difference in lepton's environment to estimate this contribution
 - Leptons from QCD Multijet associated with jets
 - Leptons from top and W are similarly isolated


Topological Discrimination



- Increasing statistical precision work to limit systematic uncertainty
 - Jet Energy Scale systematic dominates earlier results
- Use topological variables that depend on
 - Angular quantities
 - sphericity
 - aplanarity
 - Ratios of energydependent quatities
 - H'_{T2}
 - K'_{Tmin}





Likelihood Fit

- Build likelihood assuming variables uncorrelated
- Templates formed
 - Top, *W*+jets from MC
 - QCD from orthogonal data
- Signal and background yields to be extracted from likelihood fit
 - Fit would include constraint from evaluated QCD contribution
- Cross-section not yet ready
 - Working to understand background models to level necessary for precision measurement
 - Currently, top contribution fixed assuming $\sigma_{tt} = 7$ pb
 - QCD fixed to evaluated yield
 - W+jets set to make up the difference

New Run I Top Mass Measurement

- Fundamental parameter of SM
- Top mass constrains Higgs mass
- Precise measurement important after discovery of light Higgs
 - Consistency check of SM
- Run I DØ result (125 pb⁻¹, 1998):
 - $m_t = 172.1 \pm 7.1 \text{ GeV/c}^2$
- Improved precision as sample increases
 - Expectation for 2 fb⁻¹: $\delta M_t \approx 3.0$ GeV using published method
 - In meantime more powerful method for mass analysis developed with Run I data
 - Make more optimal use of our growing dataset

Improved M_t Precision in ℓ + jets

- Preselection [PRD 58 (1998), 052001]
 - Isolated lepton: E_T >20 GeV, $|\eta_e|$ <2, $|\eta_u|$ <1.7
 - Jets: ≥4, E_T>15 GeV, |η|<2
 - Missing E_T > 20 GeV
 - $|E_T^{lep}| + |\not\!E_T| > 60 \text{ GeV}$; $|\eta_W| < 2$
 - 91 events selected
- 1998 approach
 - Choose lowest χ^2 solution from constrained kinematic fit \rightarrow fitted mass
 - Topological discriminant used to separate signal and background
 - Mass estimate made with 2D fit in fitted mass and discriminant
- 2003 analysis
 - Begin with same event selection, also require exactly 4 jets
 - 71 events
 - Estimate mass using event probabilities

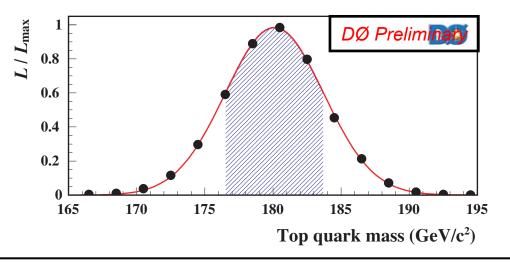
Improved Measurement: Method

Probability density

$$P(x, M_{t}) = \frac{1}{\sigma(x)} \int d\sigma(y, M_{t}) dq_{1} dq_{2} f(q_{1}) f(q_{2}) W(y, x)$$
Mass-dependent,
x : reconstructed
4-vectors

Differential Xsec
(LO Matrix element + phase space)

PDF's

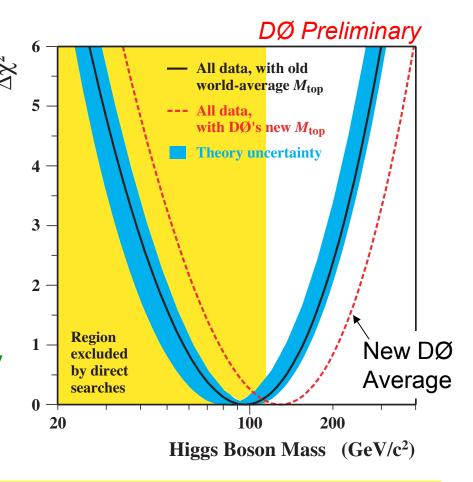

Transfer function
Relating partonic
Variables to
Measured quantities

- All jet-parton assignments considered
 - Sum probabilities of all possibilities (12 total)
 - Correct assignment always used
- Background probability
 - Main component W+jets (85% of background)
 - P_{bkg} calculated from leading order matrix element from VECBOS
- Signal purity increased with cut on background probability: P_{bkg} < 10⁻¹¹
 - Ž2 events remain

Result

- Event probability: $P(x; c_1, c_2, M_t) = c_1 P_{t\bar{t}}(x; M_t) + c_2 P_{bkgd}(x)$
 - Likelihood formed, maximized to obtain M_t, c1, c2

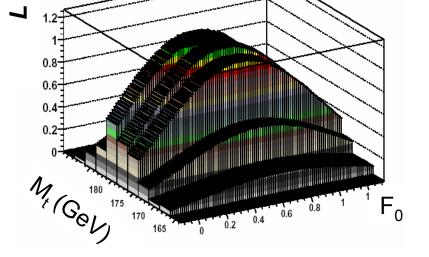
DØ Preliminary


 $M_t = 180.1 \pm 3.6 \text{ (stat)} \pm 3.9 \text{ (syst)} \text{ GeV/c}^2 = 180.1 \pm 5.3 \text{ GeV/c}^2$

- 12 signal, 10 background events
- Improvement in statistical uncertainty equivalent to 2.4 times more data...
- Dominant systematic error from JES (3.3 GeV/c²)

New Run I Mass Result and Higgs

- When combined with previous DØ dilepton measurement, new DØ combined mass:
 - $M_t = 179.0 \pm 5.1 \text{ GeV/c}^2$
- Global fit to electroweak data using this top mass
 - Method of LEPEWWG (hep-ex 0312023)
 - Best-fit M_H ≈ 123 GeV/c²
 - 95% C.L. upper limit 277 GeV/c²
- Solid line old world average
 - $M_t = 174.3 \pm 5.1 \text{ GeV/c}^2$
 - M_H ≈ 96 GeV/c², U.L. 219 GeV/c²
 - Blue curve theoretical uncertainty
- · Yellow: excluded region
 - M_H < 114.4 GeV/c² @95% CL


Run I W Helicity Measurement

- The top decays before hadronization can occur
 - Spin information transferred to daughters (Wb)
 - SM: top decays via V-A current
 W polarization for M_t = 175
 - 70% Longitudinal (F₀)
 - 30% Left-handed(F_{_})
 - Angular distribution of decay products in W rest frame probes this mixture
- Same dataset, probabilitybased approach: allow F₀ to vary

DØ Preliminary

DØ Preliminary

 F_0 = 0.56 ± 0.31 (Statistical) ± 0.04 (Systematic)

Summary and Outlook

- Updated topological σ_{tt} measurement in lepton + jets channel
 - Will make use of likelihood fits to topological discriminant
 - ~140 pb⁻¹ of newly reprocessed Run II data
 - Complete result on the way
- Many other updates in progress with this sample
 - Cross section dileptons, b-tagged ℓ + jets, all jets
 - Top mass and W helicity measurements
 - Single-top search
- Improved method for extracting top quark properties
 - Run I mass and W helicity results
 - Approach will allow for better use of a growing dataset

Extra Slides

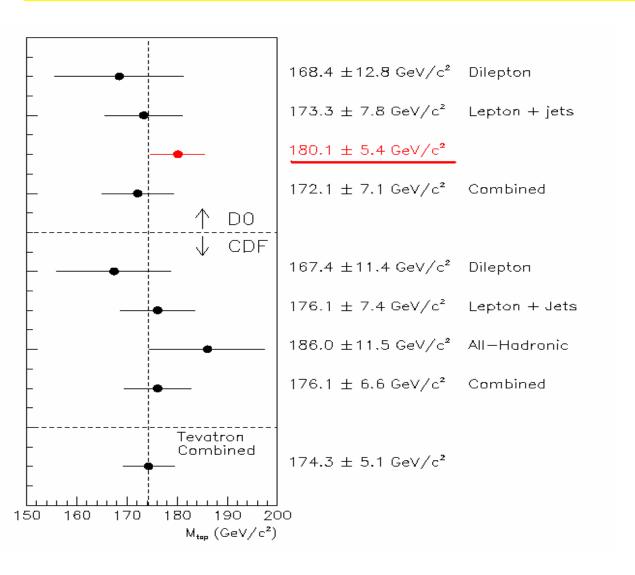
Determining QCD Multijet Yield

loose
$$\frac{\text{muon isolation}}{\text{electron likelihood cut}} \text{ tight}$$

$$N_{i} = N_{QCD} + N_{W+ttbar}$$

$$N_{i} = S + N_{QCD} + S_{W+ttbar}$$

- . N₁ and N₄ are measured in the signal data sample
- ε_{QCD} is estimated from an independent QCD data sample, requiring the same preselection, but low missing ET and low W ET
- $\epsilon_{W+ttbar}$ is estimated from W+jets MC and scaled to W+jets data by using Z events: $SF = \epsilon_{Z->||in||data} / \epsilon_{Z->||in||MC}$
- Solve this linear System of second order for the two missing unknowns:
 N_{QCD} and N_{W+ttbar}


Topological Variable Definitions

- Sphericity: summed p²_T with respect to event axis
 - Dijet event S ≈ 0, isotropic event S ≈ 1
- Aplanarity: measure of 'flatness' of event
 - Large values indicate spherical events
- H'_{T2}: measures event centrality
 - H_{T2} scalar sum of jet p_T's (excluding leading jet)
 - H_{T2}/H₇ − larger for central events
- K'_{Tmin}: measure of minimum jet p_T in closest pair
 - Tends to be small for soft & colinear backgrounds

New Run I Mass Result

The relative error in this result is 3%, compare to 2.9% from the previous CDF and DØ combined average for all channels.